1,263 research outputs found

    Directed flow, a signal for the phase transition in Relativistic Nuclear Collisions?

    Full text link
    The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles has been measured by the STAR collaboration in the beam energy scan (BES) program. In this article, we examine the collision energy dependence of directed flow v1v_1 in fluid dynamical model descriptions of heavy ion collisions for sNN=320\sqrt{s_{NN}}=3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities like e.g. the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data, the values of the slopes are always larger than in the data.Comment: 7 pages, 7 figure

    Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery

    Get PDF
    This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).Peer reviewe

    Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation

    Get PDF
    The meteorological input parameters for urbanand local-scale dispersion models can be evaluated by pre-processing meteorological observations, using a boundarylayer parameterisation model. This study presents a sensitivity analysis of a meteorological preprocessor model (MPP-FMI) that utilises readily available meteorological data as input. The sensitivity of the preprocessor to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in the atmosphere and in particular on the sensitivity of the predicted inverse Obukhov length and friction velocity on the model input parameters. The study shows that the estimated inverse Obukhov length and friction velocity are most sensitive to wind speed and second most sensitive to solar irradiation. The dependency on wind speed is most pronounced at low wind speeds. The presented results have implications for improving the meteorological preprocessing models. AD is shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on the model input values quantitatively. A wider use of such advanced sensitivity analysis methods could potentially be very useful in analysing and improving the models used in atmospheric sciences.Peer reviewe

    Directed flow as a phase transition signal in relativistic heavy ion collisions

    Get PDF

    Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    Full text link
    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced and applied to study the production of non-strange particles in heavy-ion reactions at Ekin=0.42AE_{\rm kin}=0.4-2A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with HADES and FOPI data. Predictions for particle production in π+A\pi+A collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor change

    Effect of Toluene on PEMFC Performance

    Get PDF
    AbstractLiquid organic hydrogen carriers (LOHCs) are promising means for hydrogen transportation. They are compatible with existing liquid fuel transport infrastructure and enable for efficient and safe hydrogen storage and transfer over long distances. Toluene and dibenzyltoluene are considered the two most promising LOHCs. Toluene is probably a contaminant found in hydrogen released from these LOHC liquids.The impact of hydrocarbon contaminants on automotive type fuel cells has been analyzed to a limited extent, and a few species only have specific limits (CO, CO2, HCOOH, HCHO, CH4). Currently, hydrocarbons are limited to a total of 2 ppm (methane basis) in the automotive hydrogen fuel standard, ISO 14687:2019. This may lead to strict impurity levels for species from LOHC, and therefore higher costs of hydrogen purification and quality assurance.This work presents contamination studies with toluene. The measurements were conducted using a PEMFC short stack with anode recirculation and with high fuel utilization (98%). The results show no effect or only a small contamination effect with up to 20 ppm toluene, and clear contamination with 50 ppm toluene. This supports the need for more studies so that a separate limit can be defined for toluene in future versions of the ISO 14687

    Effect of Toluene on PEMFC Performance

    Get PDF
    Liquid organic hydrogen carriers (LOHCs) are promising means for hydrogen transportation. They are compatible with existing liquid fuel transport infrastructure and enable for efficient and safe hydrogen storage and transfer over long distances. Toluene and dibenzyltoluene are considered the two most promising LOHCs. Toluene is probably a contaminant found in hydrogen released from these LOHC liquids. The impact of hydrocarbon contaminants on automotive type fuel cells has been analyzed to a limited extent, and a few species only have specific limits (CO, CO2, HCOOH, HCHO, CH4). Currently, hydrocarbons are limited to a total of 2 ppm (methane basis) in the automotive hydrogen fuel standard, ISO 14687:2019. This may lead to strict impurity levels for species from LOHC, and therefore higher costs of hydrogen purification and quality assurance. This work presents contamination studies with toluene. The measurements were conducted using a PEMFC short stack with anode recirculation and with high fuel utilization (98%). The results show no effect or only a small contamination effect with up to 20 ppm toluene, and clear contamination with 50 ppm toluene. This supports the need for more studies so that a separate limit can be defined for toluene in future versions of the ISO 14687.</p

    Smartpaddle® as a new tool for monitoring swimmers’ kinematic and kinetic variables in real time

    Get PDF
    Smart technology, such as wearables, applied to sports analysis is essential for performance enhancement. New technological equipment can promote the interaction between researchers, coaches, and athletes, facilitating information exchange in real time. Objective: The aim of this study was to present new wearable equipment (SmartPaddle®) to measure kinematic and kinetic variables in swimming and understand the agreement of the propulsive force variable with a pressure sensor system. Methods: Four male university swimmers (18.75±0.50 years old, 71.55±6.80 kg of body mass, and 175.00±5.94 cm of height) were analyzed. The SmartPaddle® and a pressure sensor system were used to collect the kinetic data (propulsive force). The comparison between the propulsive force methods was based on t-test paired samples, simple linear regression, and Bland-Altman plots. Results: SmartPaddle® is a system that consists of (i) a wearable device, (ii) the Trainesense Session Manager mobile application for recording, and; (iii) the Analysis Center for analysis and data storage. It records a set of kinematic and kinetic parameters useful for coaches daily. The comparison between the different methods revealed non-significant differences and a very-high relationship. Conclusion: SmartPaddle® is a feasible wearable device that swimmersswimmers can use can use to provide immediate data about their kinematic and kinetic profile. Coaches can easily monitor these parameters and give immediate suggestions to their swimmers on a daily basis.This work is supported by national funds (FCT - Portuguese Foundation for Science and Technology) under the project UIDB/DTP/04045/2020info:eu-repo/semantics/publishedVersio
    corecore